L p - wavelet regression with correlated errors and inverse problems
نویسندگان
چکیده
We investigate global performances of non-linear wavelet estimation in regression models with correlated errors. Convergence properties are studied over a wide range of Besov classes B π,r and for a variety of L error measures. We consider error distributions with Long-Range-Dependence parameter α, 0 < α ≤ 1. In this setting we present a single adaptive wavelet thresholding estimator which achieves near-optimal properties simultaneously over a class of spaces and error measures. Our method reveals an elbow feature in the rate of convergence at s = α 2 ( p π − 1) when p > 2 α +π. Using a vaguelette decomposition of fractional Gaussian noise we draw a parallel with certain inverse problems where similar rate results occur.
منابع مشابه
Wavelet Threshold Estimator of Semiparametric Regression Function with Correlated Errors
Wavelet analysis is one of the useful techniques in mathematics which is used much in statistics science recently. In this paper, in addition to introduce the wavelet transformation, the wavelet threshold estimation of semiparametric regression model with correlated errors with having Gaussian distribution is determined and the convergence ratio of estimator computed. To evaluate the wavelet th...
متن کاملNumerical inversion of Laplace transform via wavelet in ordinary differential equations
This paper presents a rational Haar wavelet operational method for solving the inverse Laplace transform problem and improves inherent errors from irrational Haar wavelet. The approach is thus straightforward, rather simple and suitable for computer programming. We define that $P$ is the operational matrix for integration of the orthogonal Haar wavelet. Simultaneously, simplify the formulaes of...
متن کاملWavelet Shrinkage for Regression Models with Uniform Design and Correlated Errors
This paper presents some results on semi-parametric regression using wavelet methods in the presence of autocorrelated stationary Gaussian errors, and when the explanatory variable follows an Uniform distribution. It is shown that this Uniform distribution arrives in the special cases of stochastic sampling: the Poisson and the jittered sampling schemes. The aim is to estimate the signal global...
متن کاملAsymptotically sufficient statistics in nonparametric regression experiments with correlated noise
We find asymptotically sufficient statistics that could help simplify inference in nonparametric regression problems with correlated errors. These statistics are derived from a wavelet decomposition that is used to whiten the noise process and to effectively separate high resolution and low resolution components. The lower resolution components contain nearly all the available information about...
متن کاملWavelet Shrinkage for Correlated Data and Inverse Problems: Adaptivity Results
Johnstone and Silverman (1997) described a level-dependent thresholding method for extracting signals from correlated noise. The thresholds were chosen to minimize a data based unbiased risk criterion. Here we show that in certain asymptotic models encompassing short and long range dependence, these methods are simultaneously asymptotically minimax up to constants over a broad range of Besov cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008